Elements of High Order on Finite Fields from Elliptic Curves

نویسنده

  • JOSÉ FELIPE VOLOCH
چکیده

We discuss the problem of constructing elements of multiplicative high order in finite fields of large degree over their prime field. We prove that the values on points of order small with respect to their degree of rational functions on an elliptic curve have high order. We discuss several special cases, including an old construction of Wiedemann, giving the first non-trivial estimate for the order of the elements in this construction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Jacobian and Discrete Logarithm Problem on Elliptic Curves

Let E be an elliptic curve over the finite field F_{q}, P a point in E(F_{q}) of order n, and Q a point in the group generated by P. The discrete logarithm problem on E is to find the number k such that Q = kP. In this paper we reduce the discrete logarithm problem on E[n] to the discrete logarithm on the group F*_{q} , the multiplicative group of nonzero elements of Fq, in the case where n | q...

متن کامل

Research Interests Juliana v. Belding Number Theoretic Algorithms for Elliptic Curves with Cryptographic Applications

An elliptic curve over a field K is given by an equation of the form y2 = x3 + Ax+B. There is a natural way to add any two points on the curve to get a third point, and therefore the set of points of the curve with coordinates in K form a group, denoted E(K). Elliptic curves have long fascinated mathematicians, as they can be approached from many angles, including complex analysis, number theor...

متن کامل

Ranks of Elliptic Curves with Prescribed Torsion over Number Fields

We study the structure of the Mordell–Weil group of elliptic curves over number fields of degree 2, 3, and 4. We show that if T is a group, then either the class of all elliptic curves over quadratic fields with torsion subgroup T is empty, or it contains curves of rank 0 as well as curves of positive rank. We prove a similar but slightly weaker result for cubic and quartic fields. On the other...

متن کامل

Constructing Elliptic Curves with Prescribed Torsion over Finite Fields

The modular curve X1(N) parametrizes elliptic curves with a point of order N . For N ≤ 50 we obtain plane models for X1(N) that have been optimized for fast computation, and provide explicit birational maps to transform a point on our model of X1(N) to an elliptic curve. Over a finite field Fq, these allow us to quickly construct elliptic curves containing a point of order N , and can accelerat...

متن کامل

Distribution of elliptic twins over fixed finite fields: Numerical results

This paper presents the results of numerical experiments to determine the probability, over concrete fixed finite fields, of prime-order elliptic curves having a prime-order twist. These curves are called “elliptic twins” by [7], and are useful for a variety of cryptographic applications. Most notable is that such curves are secure against an “insecure twist” attack. This attack was introduced ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009